PROJECT OVERVIEW (Technical Summary, Location and Schedule)

Name of the organization	Climate Change Department
	Delta State.
State	
Country	Nigeria.
Details of the project-site	Urban/Semi Urban Town Across Delta
	State
Project-time-period	2015 -2020
Project Manager:	
Name	Dr. (Mrs.) Felicia Adun
Title	Permanent Secretary
Email	climatechangeunit@gmail.com
Telephone	08033936524
Fax	N/A
Name of the project or Activity	Installation of Biogas Technology
1 3	Using Kitchen waste.
Products	Cooking gas for food
	88
	Bio-Fertilizer: The digested feedstock
	is after the digestion. A highly valuable
	fertilizer.
Feedstock	Kitchen waste
1 coustoen	Oil press cake
	Fish waste
	Agricultural waste
	Meat waste
	Saw dust
	Papers
	Rumen from cattle
	Crop residues- corn stalks, banana
	leaves, corncobs, water melon, paw
	paw etc.
	Sea weeds, water hyacinth, water lilies.
System	Two-stage digestion system with
Journ	1. Hydrolysis and acidification
	2. Methanisation
Digester volume	1.0m ³
Average Biogas production per unit	0.5m³ per day
per day	Methane content: 55-60%
per day	Equivalent to 0.75kg per day of
	firewood or 0.4 liters of Kerosene per
	day.

Firewood saved per year	2,736kg
Kerosene saved annually	1,460 liters
Emission Reduction per unit	3,010t C0 ₂ / year
Emission Reduction for 5000 unit	15,050,000 tCo ₂ / year
Emission reduction for 5 years of	
the project	75,250,000 t C0 ₂ reduction
Temperature range	29°C – 33°C (Average= 31°C)
Bio-methanation process	Mesophilic
Storage system	Floating type (Mild steel)
Storage tank capacity per unit	1.10 m^3
Biogas burner(designed by BDN)	Household (single port)
Efficiency of the burner	25 %
Capacity of the burner	$0.43 \text{ m}^3 \text{ per hour (Max)}, 0.313 \text{m}^3/\text{hr}$
	(avg)
Safety device	"Flame arrester" for blocking fire
	backstroke
	"Overpressure design on the floating
	tank" for regulating the gas pressure in
	the gas system.
Filtration system (activated	Removing impurity from the system.
charcoal)	
Performance	10 times higher than the manure biogas
	plants due to:
	1. High calorific feedstock
	2. Hydrolysis and acidification.